一次比赛中,所有参加比赛的选手都获得了一个分数s。已知有c_1 个同学得 1 分,c_2个同学得 2分,..... , c_m 个同学得 m 分。请你划定一个分线 k,使得不低于分数线 k 的人数 n_1 和低于分数线 k 的人数n_2均在给定的一个范围[x,y] 之内, 即x \leq n_1 \leq y,x \leq n_2 \leq y。保证 s 和 k 一定是整数,且1 \leq s \leq m,1 \leq k \leq m。
第一行仅有一个正整数 m ;
第二行包含 m 个整数c_1, c_2 ...,c_m,两两之间以空格分隔,数据保证至少有一个 c_i大于 0 ;
第三行包含两个用空格分的整 x 和 y。
如果不存在满足条件的分数线,输出 0 。否则,输出一个符合题目要求的分数线。如果有多个答案输出符合条件的答案中最小的那一个。
5 3 4 3 2 1 6 8
3
2 2 5 3 6
0
在样例 1 中,如果把分数线划定为 3,则有 7个学生低于分数线,6个同学不低于分数线,人数都在 [6,8] 范围内。
对于50\%的数据: 2 \leq m \leq 100, 0 \leq c_i \leq 100,1 \leq x \leq y \leq 10000。
对于100\%的数据: 2 \leq m \leq 10^5 ,0 \leq c_i \leq 10^5,1 \leq x \leq y \leq 10^9。